Final Thesis 30 juin 2020

Fault management in a telecommunications power supply system

Wassa Nicolas COUMOUYN

Master in Industrial Engineering Sciences Finality: Industry

Presentation Plan

Introduction

Task performed

- Methodology et Fault characteristics
- Fault detection and location
- Advanced fault management method

Conclusion

Issue : Fault management

MetroGrid project

Power supply

→ 380 Vdc

3

Problématique : gestion de défauts d'isolement

Isulation monitoring device (IMD)

4

- I. No effect
- II. Small pain but no dangerous effect → 2 mA
- III. Muscular contraction and respiratory distress, reversible effects → 25 mA (> 2 s)
- IV. Ventricular fibrillation, critical effectsn→ 350 mA (> 400 ms)

Our goals

- Research on IMD and insulation fault
- Technical Manual
- Ideas that can be used in the project

Methodology and Fault characteristics

Fault detection and location

Advanced fault Management

Methodology

First fault simulation

1.2-kΩ resistor representative for human body

• Comparison with AC

Safety of an IT system relies on a high-resistance midpoint grounding device

- Large R_{IMD}
- Absolute voltages equal but opposite (+/- 190 V)
- Anfaancoof fine second conductor = Risk of short-circuit

I limited

0 voltage on faulty conductor

The typical fault current pattern depends on 3 characteristics (1/3)

The typical fault current pattern depends on 3 characteristics (2/3)

The typical fault current pattern depends on 3 characteristics (3/3)

Methodology and Fault characteristics

Fault detection and location

Advanced fault Management

There are two methods of fault detection

de l'OURTHE

The distributed current influences the apparent insulation resistance

Fault location (1/2)

• Fault current detection

Fault location (2/2)

• Detection of an injected current

Methodology and Fault characteristics

Fault detection and location

Advanced fault Management

Principle of the method

Principle of the method

Discussion on design choices (1/3)

Position of MID

Discussion on design choices (2/3)

• Time of the interruption

At the first fault

At the second fault

- Total security
- 5G network performance maintained
- Higher time respond allowed

- Little risk of disconnection if good maintenance
- More complex device

Philosophy of the IT system

٠

Discussion on design choices (3/3)

Respond time

Conclusion

Summary and comparison of the 3 methods

Goals

- Research on IMD and isolation fault
- Technical Manual
- Ideas that can be used in the project

